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Application of continuation and bifurcation
methods to the design of control systems

By M. G. Goman1,2 and A. V. Khramtsovsky1

1Central Aerohydrodynamic Institute (TsAGI), Zhukovsky 140160, Russia
2Department of Mathematical Sciences, Faculty of Computing Science and

Engineering, De Montfort University, Leicester LE1 9BH, UK

The use of nonlinear dynamics theory for the analysis of aircraft motion and the
assessment of aircraft control systems is well known. In this paper the continuation
and bifurcation methods are applied to aircraft nonlinear control design problems.
The search for the recovery control from spin regimes is based on the minimization
of an energy-like scalar function constrained by the aircraft’s equilibria conditions.
The design of a global stability augmentation system for severe wing-rock motion
is performed by using bifurcation diagrams for equilibrium and periodical modes.
The nonlinear control law, which totally suppresses wing-rock motion, is derived,
taking into account both local stability characteristics of aircraft equilibrium states
and domains of attraction, along with the requirement that all other attractors be
eliminated.

Keywords: aircraft spin; recovery control; wing-rock motion; domains of attraction;
bifurcation diagrams; reconfigurable control law

1. Introduction

The analysis of aircraft nonlinear dynamics problems by using bifurcation methods
has been investigated over the past 20 years. The results of such work are pub-
lished in the literature both for open-loop and closed-loop aircraft models (Mehra
et al . 1977, 1978, 1979; Carroll & Mehra 1982; Guicheteau 1982, 1990; Zagainov &
Goman 1984; Planeaux & Barth 1988; Planeaux et al . 1990; Jahnke & Culick 1988,
1994; Lowenberg 1997; Liebst & DeWitt 1997; Littleboy & Smith 1997; Goman &
Khramtsovsky 1997; Goman et al . 1997). The bifurcation methods were used mostly
like methods of nonlinear dynamics analysis and assessment of control laws in the
case of closed-loop aircraft models.

Extending the flight envelope to high angle-of-attack (AOA) regions presents a
big challenge in control-system design for modern and advanced manoeuvrable air-
craft. At high AOA, the aerodynamic characteristics are essentially nonlinear, con-
trol authorities of aerodynamic surfaces and other types of effectors are limited, and
actuators provide additional constraints such as deflection limits and rate saturation.

The existing multivariable control-law design techniques, such as nonlinear dynam-
ic inversion (NDI), H∞ and µ-synthesis, are unable to take explicit account of all
the important nonlinearities of aircraft mathematical models (Lane & Stengel 1988;
Adams & Banda 1993; Goman & Kolesnikov 1997). In engineering practice, the lack
of methods for nonlinear synthesis is usually compensated for by extensive numerical
simulation of closed-loop system dynamics and empirical selection of the feedback
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gains and control-system parameters to obtain desirable handling qualities and stabil-
ity characteristics. The qualitative bifurcation methods used in Goman et al . (1996)
for maximizing the stability region of the closed-loop system, showed their potential
in the control-law design process.

The main object of the current paper is to demonstrate that qualitative meth-
ods of nonlinear closed-loop system computational analysis with any type of con-
troller (which usually leaves a set of free parameters in the derived control laws)
can be efficiently applied to control system design. In this paper, the continuation
and bifurcation diagram methods for equilibria and steady periodical motions, along
with numerical study of their domains of attraction, are considered as basic tools for
control interconnection and feedback-gains scheduling depending on state variables.

All computations in the paper are performed by using a mathematical model for
a hypothetical aircraft (Goman et al . 1995), whose aerodynamic characteristics are
similar to the aerodynamic characteristics of many existing combat aircraft. This
aircraft possesses severe wing-rock motion and flat-spin regimes due to aerodynamic
asymmetry in yaw. The recovery control from flat-spin modes and wing-rock motion
suppression by proper scheduling of feedback gains on state variables are presented
to demonstrate the proposed control design methods.

2. Aircraft mathematical model

The six-degrees-of-freedom equations of motion of a rigid-body aircraft with constant
mass and inertia (under some physical assumptions), can be reduced to an eighth-
order autonomous system of ordinary differential equations, which depends on the
control parameters:

dx
dt

= F (x, δ), (2.1)

where x = (α, β, p, q, r, V, θ, φ)′ ∈ R8, is the state vector composed of AOA, sideslip,
body roll, pitch and yaw rates, velocity, pitch and bank angles, and δ=(ϕ, η, δa, δr, T )′
∈ R4 is the control vector composed of mean and differential stabilator deflections,
aileron and rudder deflections and thrust, (the prime denotes vector transposition).
The steady-state regimes of this open-loop system, which are the vertical spiral
trajectories, are defined by its equilibrium solutions, when control parameters are
fixed or varied slowly.

The vector function on the right-hand side of (2.1) is composed of kinematic,
inertial and aerodynamic terms, the latter being dependent on aircraft configuration.
Aerodynamic-model development is a special problem for each aircraft, and usually
requires expensive and time-consuming analysis.

A control-system mathematical model is added to the aircraft motion equations
(2.1) as follows,

dδ
dt

= Fc(x, δ,k, s), (2.2)

where the vector-function, Fc, is determined by the structure of control laws, s =
(xe, xa, xr, . . . )′ is a control vector with stick and pedal deflections, and vector k is
composed of feedback gains and parameters defining control-system constraints like
actuator deflection limits and rate saturation.
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The state of the closed-loop system, described by a combination of (2.1) and (2.2),
is extended by aerodynamic control deflections and thrust, i.e.

z = (α, β, p, q, r, V, θ, φ, ϕ, η, δa, δr, T )′.

For example, to determine the equilibrium states of a closed-loop system, the follow-
ing joint set of equations (2.3) should be used,

F (x, δ) = 0, Fc(x, δ,k, s) = 0. (2.3)

The elements of vectors x and δ are unknown variables now, and vectors s and k
define the set of parameters. Note that the closed-loop system (2.3) possesses only a
subset of the whole set of equilibrium solutions of the open-loop system (2.1), and
the continuation of its equilibrium solutions with control parameters s, may lead
to the ‘sharp’-fold bifurcation points when control surfaces enter on their deflection
limits.

(a) Representation of aerodynamic characteristics

The aerodynamic model for high-incidence conditions is usually formulated by
using experimental data obtained in a wind tunnel on the facilities for static, forced-
oscillation and rotary balance tests (AGARD 1990). The proper combination of these
experimental data for different flight conditions is very important for the adequacy
of the mathematical model.

The conventional representation of aerodynamic coefficients by using body axes
angular rates p, q and r is consistent only when aerodynamic coefficients can be
represented by linear dependencies on angular rates. Such representation is valid for
small disturbed rectilinear flight paths. The spatial aircraft motion with intensive
rotation at high AOA may strongly influence vortical and separated flow, and, as
a consequence, the aerodynamic coefficients become nonlinear functions on an air-
craft coning rate. In such a case, another characteristic motion parameter may be
introduced for the representation of aerodynamic coefficients. In particular, the force
and moment components resolved in the body-axes system can be represented as the
functions on angular velocity components resolved in wind-body-axes system (the
longitudinal axis coincides with the velocity vector, and the vertical axis is in the
plane of an aircraft symmetry).

The projections of the angular rate vector onto the wind-body axes are suitable
for describing the disturbances with respect to pure conical motion. The roll rate in
wind-body axes, i.e. pw = (p cosα+ r sinα) cosβ+ q sinβ, defines the rate of conical
rotation, similar to the angular rate in rotary balance tests, and can be naturally used
for the representation of nonlinear dependence on coning rate. Two other projections,

qw = −(p cosα+ r sinα) sinβ + q cosβ and rw = r cosα− p sinα,

define both the unsteadiness and spirality of motion:

α̇ = (qw − qwsp)/ cosβ, β̇ = −rw + rwsp .

The values of qwsp and rwsp are the wind-body angular rates in steady-state spiral
motion, and their non-dimensional values, (qwsp c̄/2V ) and (rwspb/2V ), are usually
negligible.
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Assuming that disturbances of the pure conical motion are small, the following
representation of the aerodynamic coefficients can be used (i = X,Y, Z, l,m, n):

Ci = CiRB

(
α, β,

pwb

2V
, δ

)
+ Ciqw

qwc

2V
+ Ciα̇

α̇c̄

2V
+ Cirw

rwb

2V
+ Ciβ̇

β̇b

2V

= CiRB(α, β, pw, δ) +
(
Ciqw +

Ciα̇
cosβ

)
qwc̄

2V
+ (Cirw − Ciβ̇ )

rwb

2V

− Ciα̇
qwsp c̄

2V cosβ
+ Ciβ̇

rwspb

2V
, (2.4)

where the aerodynamic coefficients measured in rotary balance tests, (·)RB, are con-
sidered as the basic or ‘undisturbed’ part of the representation (2.4). The aerody-
namic derivatives correspond to the rotary flow, and can be measured by means of
oscillatory coning techniques, such as those in use at ONERA/IMFL (AGARD 1990),
but more often they are replaced by the derivatives obtained in forced-oscillation
tests. The terms multiplied by qwsp and rwsp in (2.4) are usually neglected.

The representation (2.4) for stall/spin conditions is quite natural. For example,
the rotary derivatives Ciqw and Cirw do not significantly affect either the values of
kinematic parameters at an equilibrium spin, or their mean values during oscilla-
tions with moderate amplitude. These derivatives, as well as unsteady derivatives
Ciα̇ and Ciβ̇ , directly affect the stability margin of the oscillatory spin mode. Thus
they determine, for example, the amplitude of the ‘agitated’ spin motion, when the
equilibrium spin is unstable in oscillatory mode.

The rotary balance data, CiRB(α, β, p̄w, δ) in the aerodynamic model, enable real-
istic values of the equilibrium spin parameters to be derived. To improve the time
histories and amplitudes of the oscillations, one can make some adjustments (if nec-
essary) to rotary and unsteady derivatives: Ciqw , Cirw , Ciα̇ and Ciβ̇ .

All the wind tunnel data are measured and tabulated for a wide range of state
and control parameters. To facilitate the implementation of the continuation tech-
nique, the aerodynamic functions may be smoothed by means of spline or polynomial
approximation to ensure continuity and differentiability conditions for the resulting
nonlinear dynamic system.

Aerodynamic asymmetry is one of the important features of high-AOA aerody-
namics. Asymmetry may appear at zero sideslip/rotation rate and zero aileron/rud-
der deflections (Cobleigh et al . 1994). It may be larger than maximum aileron
and rudder efficiency. Asymmetrical roll moments can significantly influence stall
behaviour, while asymmetrical yaw moment at high AOA predominantly defines the
spin behaviour. Due to yaw asymmetry, the right spin modes can greatly differ from
the left ones, both in the values of motion parameters and the character of stability.
The flat-spin modes can become unrecoverable.

Unsteady aerodynamic effects at high AOA, due to the dynamic development of
separated and vortex flow, can significantly transform the real aerodynamic loads
with respect to their conventional representation discussed above. The unsteady
effects in (2.4) were described simply by using linear terms with unsteady aero-
dynamic derivatives. There are special regions of incidence, for example the CLmax

region, where the conventional representation is invalid. Special approaches using
the functional form or differential-equations representation may improve the aero-
dynamic model by taking into account the nonlinear unsteady aerodynamic effects
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Figure 1. Aerodynamic stability and control derivatives at high AOA at β = 0, pw = 0.

due to separated and vortex flow dynamics (Tobak et al . 1985; Goman & Khrabrov
1994).

The force and moment coefficient representation used in the paper for dynamic
analysis and control design has the following form:

CX = CX(α, ϕ),

CY = CY (α, β) + CYrw (α)
rwb

2V
+ CYδa (α, |δa|)δa + CYδr (α, |δr|)δr,

CZ = CZ(α, ϕ),

Cl = Clas(α) + Clβ (α, β)β + Clδa (α, |δa|)δa + Clδr (α, |δr|)δr
+ Clη(α, ϕ)η + Clpw

(α, ϕ)
pwb

2V
+ Clrw (α, |rw|)rwb

2V
,

Cm = Cm(α, ϕ) + Cmq(α)
qc̄

2V
,

Cn = Cnas(α) + Cnβ (α, β)β + Cnδa (α, |δa|)δa + Cnδr (α, |δr|)δr
+ Cnη(α, ϕ)η + Cnpw

(α, ϕ)
pwb

2V
+ Cnrw (α, |rw|)rwb

2V
,



(2.5)

where δa is the aileron deflection, δr is the rudder deflection, ϕ is the mean stabilator
deflection and η is the differential stabilator deflection.

The model (2.5) has a strong aerodynamic coupling between the longitudinal and
lateral motion modes due to dependence of rotary derivatives, Clpw

(α, ϕ), Cnpw
(α, ϕ),

on mean stabilator deflection, and moment asymmetry, Clas(α), Cnas(α), on AOA.
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For example, in figure 1, some aerodynamic stability and control derivatives for high
incidence are shown. The dependence of roll- and yaw-moment coefficients on sideslip
in the region with Clβ > 0 is nonlinear.

3. Nonlinear dynamics analysis methods

The computational tools for the analysis of the nonlinear dynamics of aircraft have
been under development for many years, and several packages are now available
(Wood et al . 1984; Doedel & Kernevez 1986; Guicheteau 1992; Goman & Khramtsov-
sky 1993). The same qualitative methods of analysis may be applied to open-loop and
closed-loop systems, the only difference being that, in the latter case, the problem
becomes more complicated and nonlinear. Non-smooth functions due to dead zones
and saturation, which are specific to mathematical models of control systems, require
a higher level of robustness of numerical algorithms for continuation and bifurcation
analysis.

Linear control design methods, which are used for the augmentation of aircraft
dynamics, usually do not take into account all of the important nonlinearities in
the aircraft mathematical model. As a result, the handling qualities and stability
characteristics may be satisfactory only at small disturbances from the controllable
flight conditions. The qualitative analysis of aircraft closed-loop dynamics in such
cases provides valuable information for control design. By varying free control-system
parameters, like input interconnections, feedback gains, actuator constraints, etc., the
closed-loop dynamics can be modified and improved, even for conditions where the
applied control design method does not guarantee desired characteristics.

The following computational methods for equilibria and periodical orbits investi-
gation, provided by the KRIT package (Goman & Khramtsovsky 1993), were used
in this work for control law design:

1. continuation method along with the local stability analysis;

2. bifurcation-diagram method;

3. global stability analysis by computation of two-dimensional cross-sections of
domain of attraction.

The continuation algorithm includes the orthogonal type of convergence to solu-
tion curves in the extended state space, thus improving bypass of aerodynamic kinks
and turning points (Goman 1986). It is also used in other algorithms of the KRIT
package, such as the systematic search method for computation of multiple solutions
of nonlinear systems (Goman & Khramtsovsky 1997), minimization of a functional
under constraints defined by the nonlinear system, the boundary of stability region
continuation, etc. The KRIT package also contains automatic routines for the sys-
tematic search for multiple solutions, their continuation with system parameters and
the processing of bifurcation points.

The direct method for investigation of multi-dimensional domains of attraction
by computation of their two-dimensional cross-sections was outlined and applied for
aircraft roll-coupling dynamics in Goman & Khramtsovsky (1997), where only the
equilibrium states were considered. The proposed method can be applied in a similar
way to the global stability analysis of an aircraft oscillatory motion.
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Figure 2. Computation of two-dimensional cross-section of multi-dimensional domains of
attraction.

Figure 2 provides the qualitative description of the method. In the multi-dimen-
sional space of a dynamical system, formed from (2.1) and (2.2), the two-dimensional
cross-section, P2, is selected. For example, it can be defined by two vectors. One of the
vectors gives the point belonging to the cross-section P2, and the second assigns the
normal vector to the plane. By the proper choice of orientation of the cross-section
P2, its coordinate system (Xk, Xj) may coincide with any pair of state variables.
The grid in the plane P2 is defined depending on the required accuracy of stability-
region computation. The selected grid points provide initial conditions for numerical
computation of dynamical system trajectories.

Each attractor is surrounded by a special region, which is a subset of its full
stability region. For example, this region can be estimated by means of the Lyapunov
function method. The entering of a state point inside this region defines the condition
for termination of trajectory integration. Note that a closed orbit is represented by
its fixed point and (n − 1)-dimensional secant plane crossing a closed orbit in this
fixed point. The total time for computation depends on the grid size and the sizes of
the guaranteed estimates of all domains of attraction. Finally, this method provides
the map in P2 defining areas belonging to different domains of attraction.

The outlined method is a very efficient tool, both for control law assessment and for
control law design, because it permits identification of a very complicated topology
structure of the stability region and gives accurate values for critical disturbances in
the state variables.

4. Control-surfaces interconnection and departure prevention

Control-augmentation systems of modern aircraft involve both the direct intercon-
nections between the control-surface deflections and different kinds of feedback. The
direct interconnections can significantly improve the controllability of an aircraft and
avoid possible departures due to aircraft-motion coupling.
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Figure 3. Recovery control from critical autorotational regimes.

The bifurcation diagrams in the plane of aileron, rudder or stabilator deflections
reveal the ‘departure-free’ regions of the flight envelope. If interconnection keeps
control surfaces inside the ‘departure-free’ region, coordinated turns (β = 0) and
departure prevention may be provided. Such interconnection at small control deflec-
tions is similar to well-known aileron–rudder interconnection, used in many aircraft
(Mehra et al . 1977, 1978, 1979; Guicheteau 1990).

The continuation technique can be applied to compute the nonlinear interconnec-
tion laws between stabilator, aileron and rudder, required to provide decoupling of
longitudinal, directional and roll equilibrium states. Such decoupling may be useful
during fast roll manoeuvres with strong aerodynamic and inertia interaction between
longitudinal and lateral dynamics.

When considering the roll-coupling problem, equation (2.1) is reduced to a fifth-
order system by neglecting the spiral motion, velocity change and gravity terms
(Goman et al . 1997). The equilibrium states will be defined by the following nonlinear
system:

F (α, β, p, q, r, ϕ, η, δa, δr) = 0, F ∈ R5. (4.1)

Both state variables and control parameters in (4.1) are equivalent, therefore for
continuation one can take the equilibrium states q, r and control parameters ϕ, η, δa,
δr as unknown variables, and the states α, β and p as some predefined parameters,
say α = αdem, β = βdem and p = pdem.

In this case the nonlinear interconnections between stabilator, aileron and rudder
will be computed by a continuation technique for every demanded manoeuvre αdem,
βdem and pdem.
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Figure 4. Recovery control from flat-spin mode: (a) approximate diagram with pitch and roll/yaw
balance curves; (b) computed recovery control sequence (N is the number of continuation steps).

5. Spin recovery control

Aircraft stability and control characteristics in spin and autorotational regimes may
be very unusual for pilots, especially in comparison with common flight conditions.
The determination of recovery control in flight dynamics simulation may be a very
complicated problem due to motion coupling and reverse reaction on control inputs.

To stop aircraft rotation and decrease aircraft incidence the problem can be for-
mulated in terms of minimization of an ‘energy’-like scalar function,

W = 1
2mV

2(α2 + β2) + 1
2(Jxxp2 + Jyyq2 + Jzzr2), (5.1)

which defines the intensity of rotation and aircraft incidence (here m is aircraft
mass, V is flight velocity, Jxx, Jyy, Jzz are aircraft moments of inertia in body
axes). Recovery control can be determined as the minimization of the scalar function
(5.1) considering aircraft equilibrium states

min
δ

W(x), where {x : F (x, δ) = 0}. (5.2)

Application of a gradient descent method to the minimization problem of (5.2)
gives the following differential form for the recovery control increment,

dδ = k

[
∂W
∂x

(
∂F

∂x

)−1
∂F

∂δ
− ∂W

∂δ

]
, (5.3)

and the finite control trajectory can be integrated by using a continuation method
at every point satisfying the equilibria conditions.

Continuation with (5.3) is valid when aircraft equilibria are stable and regions with
low oscillatory instability can be ignored. After encountering a bifurcation point,
when the Jacobian matrix degrades det(∂F /∂x) = 0, it is necessary to perform a
dynamic jump to another stable equilibrium by means of integration of the dynamic
equations (2.1).

An example of the recovery control computation is shown in figure 3. The surface
for equilibrium roll rate p and bifurcation diagram in the plane of stabilator, ϕ,
and aileron, δa, deflections reveal the critical region with autorotational regimes
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Figure 5. Bifurcations of aircraft equilibria at high AOA (P1, P2 are pitchfork bifurcation
points, H1, H2 are Hopf bifurcation points).

Figure 6. Aircraft wing-rock motion (amplitudes of stable periodical orbits).

(the roll-coupling problem for low altitude and high velocity flight is considered).
The recovery trajectory encounters the fold bifurcation on the equilibria surface and
after the ‘jump’ returns smoothly to the desired zero-rotation point.

Another example illustrates the recovery control from a spin regime (figure 4).
Aerodynamic asymmetry in yaw, Cnas(α), at high AOA can generate flat-spin re-
gimes, which may be unrecoverable for a high level of asymmetry. Figure 4a shows in
the plane of reduced coning rate, p̄w, and AOA, α, the curves defining the equilibrium
condition in pitch motion, i.e. balance of aerodynamic and inertia pitch moments
(solid line), and the equilibrium condition in roll/yaw motion (dashed line). The
black intersection points define the steady spin regimes, which can be stable or
unstable in oscillatory mode, the white intersection point defines the aperiodically
unstable equilibrium.
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Figure 7. Closed orbits projection (family one, −23.4◦ 6 ϕ 6 −20.5◦).

The recovery control from the flat-spin regime (black point with a higher value of
AOA), computed in accordance with (5.3), decreases aircraft rotation and AOA (see
figure 4b). Due to aerodynamic and inertia coupling between the longitudinal and
lateral motion modes, the recovery control initially looks unusual. To stop aircraft
rotation, the stabilator is deflected in the pitch-up direction, although the decrease
in AOA in common flight conditions requires stabilator deflection in pitch-down
direction.

6. Wing-rock motion suppression

Wing-rock motion at high AOA is prevalent in many modern manoeuvrable aircraft.
Elimination of wing-rock motion by means of aerodynamic change is too complicated
a problem, which requires expensive experimental investigation. Many different works
were devoted to the problem of the suppression of wing-rock motion by automatic
control, and practically all of them considered the stabilization of the equilibrium
flight regime at high AOA locally, taking into consideration eigenvalues and their
dependence on feedback parameters. For example, delay in AOA of wing-rock onset
in the F-15 aircraft was obtained in Liebst & DeWitt (1997).

Wing-rock motion is essentially a nonlinear phenomenon, and it should be consid-
ered globally, taking into account the influence of the control system on periodical
motion modes. This section presents the results of such a consideration for a hypo-
thetical aircraft.
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Figure 8. Closed orbits projection (family two, −30.5◦ 6 ϕ 6 −21.5◦).

Figure 5 shows the equilibrium states of the aircraft for AOA and sideslip at high
incidence as a function of stabilator deflection (aileron and rudder are zero, aerody-
namic asymmetry at β = 0 is subtracted). There is a range where the equilibrium
with zero rotation and sideslip becomes unstable. The instability region is bounded
by two Hopf bifurcation points H1 and H2; inside this region there are two pitchfork
bifurcation points P1 and P2.

The pitchfork bifurcation points are branching points where two autorotational
branches of aircraft equilibria originate. Here they are asymmetrical due to asym-
metry in the mathematical model for positive and negative sideslip. Practically all
autorotational equilibria solutions are unstable in oscillatory mode (solid lines rep-
resent stable solutions; dashed lines represent aperiodically unstable solutions; and
dash–dotted lines represent solutions unstable in oscillatory mode).

Figure 6 shows the equilibria solutions for roll rate as a function of stabilator
deflection, superimposed by the amplitudes of stable closed orbits, i.e. periodical
solutions of motion equations. Periodical solutions originate in the Hopf bifurcation
points H1 and H2. The closed orbits in family one arise in a subcritical manner, and
in a supercritical manner in family two. The amplitudes in family one are less than
in family two. In figures 7 and 8 the projections of periodical orbits on the planes
(α, β) and (p, β) are presented, respectively, for orbits from family one and family
two.

For the suppression of wing-rock motion, the design of a linear control law with
lateral motion feedbacks was considered. The local stability characteristics of sym-
metrical aircraft equilibria were more sensitive to feedbacks with sideslip β, and
wind-body yaw rate rw.

The conventional lateral control with aileron and rudder usually loses its efficiency
at high AOA (α ≈ 40–45◦). Therefore, the differential deflection of the stabilator
was considered for motion control with limited deflection |ηmax| = 5◦, in order to
avoid large interference with longitudinal motion. The aerodynamic efficiency of the
differential stabilator appears both in roll and yaw channels.

The bifurcation diagrams for equilibria and periodical orbits in the plane of feed-
back coefficients Kβ and Kω from the linear control law, η = Kββ −Kω r̄w, for two
stabilator deflections, ϕ = −20.9◦ and ϕ = −24◦, are presented, respectively, in
figure 9a, b (in both cases δa = δr = 0). In the first case, the wing-rock motion is
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Figure 9. Bifurcation diagrams in the plane of feedback coefficients Kβ and Kω, for two
stabilator deflections: (a) ϕ = −20.9◦, (b) ϕ = −24◦.

determined by cycle from family one with lower amplitudes. In the second case the
aircraft has a severe wing-rock motion, which is determined by cycle from family two
(see figures 7 and 8).

Small-amplitude wing-rock motion at ϕ = −20.9◦ can be suppressed by relatively
small values of feedback parameters. In figure 9a, the Hopf bifurcation boundary
for equilibria points is presented along with the bifurcation boundary of closed orbit
vanishing.

The suppression of wing-rock motion or closed orbit requires greater feedback in
sideslip, Kβ , than for stabilizing only the equilibrium point. So, the region A is
suitable for the selection of feedback coefficients for the non-local stabilization of
aircraft equilibria.

The wing-rock motion at ϕ = −24◦ is more complicated for control and suppres-
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Figure 10. Domains of attraction for the closed-loop system at Kβ = 0.2, Kω = 9.

Figure 11. Domains of attraction for the closed-loop system at Kβ = 1.0, Kω = 9.

sion. The bifurcation diagram presented in figure 9b demonstrates a more complex
structure of closed-loop dynamics for varying feedback coefficients.

Since the Hopf bifurcation boundary for the equilibrium state has moved to higher
values of sideslip feedback, it is necessary to provide stronger feedback in sideslip to
stabilize the equilibrium point.

The stable, medium-sized, closed orbit appears in the large area of the feedback
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Figure 12. Domains of attraction for the closed-loop system at Kβ = 1.4, Kω = 9.

plane, indicating an additional wing-rock-motion regime with lower amplitude and
higher period of oscillation. The original large-sized cycle determining the aircraft
wing-rock motion without feedback exists everywhere except in region B, character-
ized by low values of sideslip feedback gain Kβ and large feedback gain in roll rate
Kω.

The medium-sized closed orbit disappears in region A with high values of sideslip
gain Kβ. The bifurcation boundaries where the medium-sized and large-sized closed
orbits disappear were computed for different values of rate saturation of stabilator
actuators. Because the deflection limit is small (∆η = ±5◦), the influence of the rate
saturation parameter is not significant.

To analyse the closed-loop dynamics globally, four points in the feedback plane
were selected: (1) Kβ = 0.2, Kω = 9; (2) Kβ = 1.0, Kω = 9; (3) Kβ = 1.4, Kω = 9;
and (4) Kβ = 1.8, Kω = 9 (in all four cases the control settings were ϕ = −24◦,
δa = δr = 0). In these selected points the domains of attraction of all stable motion
modes of the closed-loop system were investigated. In figures 10, 11, 12 and 13, the
cross-sections in the plane (p, β) of these domains of attraction are presented for
control setting ϕ = −24◦, δa = δr = 0.

At the first point with low sideslip coefficient Kβ = 0.2, the equilibrium is oscilla-
tory unstable, and there exists only one stable medium-sized periodical motion (see
figure 10; markers define the points belonging to the domain of attraction of stable,
medium-sized, periodic solution).

At the second point (see figure 11) with Kβ = 1.0, two attractors exist: a stable,
medium-sized, closed orbit and a stable, large-sized, closed orbit. The domains of
attraction are defined by different markers: circles (darker markers) fill the attraction
region of the large-sized cycle; and small crosses (lighter markers) fill the attraction
region of the medium-sized cycle.

At the third point with Kβ = 1.4, a third attractor has appeared: the equilibrium
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Figure 13. Domains of attraction for the closed-loop system at Kβ = 1.8, Kω = 9.

Figure 14. Scheduling of feedback coefficients depending on the state variables—Kβ = 1.8,
Kω = 9 if (p, β) ∈ S and Kβ = 0.2, Kω = 9 if (p, β) is out of S.

point becomes stable; and the medium-sized closed orbit is close to vanishing. The
region of attraction of the equilibrium point is composed of white areas (figure 12).

At the fourth point with Kβ = 1.8 (see figure 13), there are only two attractors:
a stable equilibrium (its domain of attraction is composed of white areas) and a
large-sized closed orbit (the domain of attraction is filled by circles).
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Figure 15. Time histories of closed-loop system: (a) medium-sized oscillatory motion atKβ = 1.0,
Kω = 9; (b) large-sized oscillatory motion at Kβ = 1.0, Kω = 9; (c) feedback scheduling
providing global stability for equilibrium flight Kβ = Kβ(p, β), Kω = 9.

The medium-sized closed orbit from point (1) in the feedback plane (Kβ = 0.2,
Kω = 9, see figure 10) is located totally inside the region of attraction S of the
equilibrium state at point (4) in the feedback plane (Kβ = 1.8, Kω = 9, see figure 13).
This is illustrated in figure 14.

The information obtained during the qualitative analysis of closed-loop systems
with different feedbacks enables the design of a variable-structure control law, which
provides global stability for the equilibrium point.

Inside the stability region S of the equilibrium point, corresponding to Kβ = 1.8,
Kω = 9, the feedback coefficients are selected as point (4): Kβ = 1.8, Kω = 9 (see
figure 14). This control will provide the convergence to the equilibrium point inside
S. Outside region S, the feedback coefficients are to be changed to values from point
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(1): Kβ = 0.2, Kω = 9, providing the convergence to the stable, medium-sized, closed
orbit, but it is totally located inside region S. Therefore, this variable-structure or
reconfigurable control will provide stability for aircraft equilibrium flight and totally
suppress all the periodical motion.

Figure 15 shows time histories of the closed-loop system without scheduling at
Kβ = 1.0, Kω = 9: (a) medium-sized limit cycle; (b) large-sized limit cycle; and (c)
time history with the proposed scheduling of sideslip feedback coefficient Kβ(p, β)
providing the global stability to aircraft equilibrium flight.

7. Conclusion

The results presented demonstrate the efficiency of qualitative computational meth-
ods of nonlinear dynamics analysis for the design of control laws, which prevent
departures. They are especially important in cases where there is strong nonlinear
behaviour due to nonlinearities in aerodynamics and the control system.

This work was partly supported by a contract with the Defence Evaluation and Research Agency
of Bedford, UK, and a Grant from the Russian Foundation for Basic Research N 96-01-00612.
The authors are grateful to Dr Yoge Patel and Dr Darren Littleboy for valuable discussions.
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